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1. Introduction

In the context of the use of the bootstrap to reduce the size distortions of tests, Diebold
and Chen (1996) consider a simulation study to obtain better approximations to finite-sample
distributions for single structural change tests using the bootstrap procedure. Their analysis
presents numerous limitations since they don’t allow for multiple breaks and shifts in the
innovation variance across regimes. Here, we generalize their analysis so as to take these
limitations into account. Indeed, we extend the analysis to multiple structural change tests1

allowing for heterogeneity in the errors across regimes in the estimated regression model and
propose some bootstrap tests as alternative solutions to the asymptotic tests constructed in
Bai and Perron (1998).

The motivation for this paper lies in the fact that the asymptotic distribution theory of
many of the break tests presented in the literature may not always be particularly useful in
small sample situations. This is a practical difficulty because model selection problems such
as the one of selecting the number of breaks in a time series is a small sample problem. The
solution discussed in this paper is the one in which the asymptotic distribution is replaced
by an empirical one, and the latter is obtained by a parametric or nonparametric bootstrap.
We first show that the bootstrap methods allow yielding distributions independent of the
minimal number of observations in each regime and the maximal possible number of breaks,
unlike the asymptotic distributions which depend on these parameters as discussed by Bai
and Perron (1998). We second show the accuracy of the bootstrap procedures and their
ability to reduce or eliminate the error in rejection probability (size distortion) committed
by the asymptotic tests.

The remainder of the paper is organized as follows. In section 2, we review the multiple
structural change approach, namely the model, the estimation method and the test statistics.
Section 3 introduces the bootstrap technique and the relating basic concepts being useful to
carry out the simulation experiments. The finite-sample size performance of the asymptotic
and bootstrap tests is investigated by simulations in section 4. We find that the bootstrap
turns out to be a very useful tool in that it substantially improves size properties in dynamic
models, regardless of the nature of the error distribution across regimes and whatever the
value of the minimal number of observations in each segment. This contrasts with the results
of Bai and Perron (2006) who find that the asymptotic tests are reliable only for large values
of the trimming and homogenous errors across regimes. Section 5 concludes the paper.

2. The structural change approach

2.1 The model and the estimation method

The structural change model with m breaks, (T1, . . . , Tm), is given by

1Considering multiple structural change tests is motivated by the fact that there is no theoretical jus-
tification for the assumption that a series would contain at the maximum one break and that there is no
reason to suppose that the number of shifts will be known if the break locations are not. Moreover, it is
well known that given the different international economic events a data series can be characterized by the
presence of several breaks in its structure. Under these conditions, the tests designed to the case of only one
break suffer from a power loss; and thus, considering multiple change tests becomes a need for exploring well
the empirical evidence of instability in the series.
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yt = z
′
tδj + ut, (1)

where t = Tj−1 + 1, . . . , Tj for j = 1, . . . ,m + 1, T0 = 0 and Tm+1 = T . yt is the observed
dependent variable, zt ∈ Rq is the vector of regressors, δj is the corresponding vector of
regression coefficients with δi �= δi+1 (1 ≤ i ≤ m), and ut is the disturbance that has a
distribution D (0, σ2), with σ2 < ∞. The above model is expressed in matrix form as
Y = Z̄δ + U , where Y = (y1, . . . , yT )

′, δ =
(
δ′1, δ

′
2, . . . , δ

′
m+1

)′
, U = (u1, . . . , uT )

′, and

Z̄ = diag (Z1, . . . , Zm+1) with Zi =
(
zTi−1+1, . . . , zTi

)′
. For i = 1, . . . ,m, we define the break

fractions λi = Ti/T with 0 < λ1 < · · · < λm < 1. Bai and Perron (1998) impose some
restrictions on the possible values of the break dates by defining the following set for some
arbitrary small positive number ε: Λε = {(λ1, . . . , λm) ; |λi+1 − λi| ≥ ε, λ1 ≥ ε, λm ≤ 1− ε}
to restrict each break date to be asymptotically distinct and bounded from the boundaries
of the sample.

The estimation method proposed by Bai and Perron (1998) is based on the ordinary least-
squares (OLS) principle. The method first consists in estimating the regression coefficients δj
by minimizing the sum of squared residuals

∑m+1
i=1

∑Ti
t=Ti−1+1

(yt − z′tδi)
2. Once the estimate

δ̂ (T1, . . . , Tm) is obtained, we substitute it in the objective function and denote the resulting

sum of squared residuals as ST (T1, . . . , Tm). The estimated break dates
(
T̂1, . . . , T̂m

)
are

then determined by minimizing ST (T1, . . . , Tm) over all partitions (T1, . . . , Tm) such that
Ti − Ti−1 ≥ [εT ], where [·] denotes integer part of argument. Finally, the estimated regres-

sion coefficients are such that δ̂ = δ̂
(
T̂1, . . . , T̂m

)
. In the Monte Carlo Study, we use the

efficient algorithm developed in Bai and Perron (2003a), based on the principle of dynamic
programming, to estimate the unknown parameters.

2.2 The test statistics

We focus on tests for multiple breaks developed by Bai and Perron (1998) who first
consider the sup F type test of structural stability against the alternative hypothesis that
there is a known number of breaks k:

supFT (k; q) = sup
(λ1,...,λk)∈Λε

FT (λ1, . . . , λk; q) , (2)

where

FT (λ1, . . . , λk; q) =
1

T

(
T − (k + 1) q

kq

)
δ̂
′

R′
(
RV̂

(
δ̂
)
R′
)−1
Rδ̂, (3)

R is the conventional matrix such that (Rδ)′ =
(
δ′1 − δ

′
2, . . . , δ

′
k − δ

′
k+1

)
, and V̂

(
δ̂
)
is an esti-

mate of the variance covariance matrix of δ̂ given by V
(
δ̂
)
= p limT

(
Z̄ ′Z̄

)−1
Z̄ ′ΩZ̄

(
Z̄ ′Z̄

)−1
,

with Ω = E (UU ′).
The authors also consider double maximum tests of no structural change against an

unknown number of breaks given some upper bound M for m:
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DmaxFT (M, q, a1, . . . , aM ) = max
1≤m≤M

am sup
(λ1,...,λm)∈Λε

FT (λ1, . . . , λm; q) . (4)

Firstly, they set the weights {a1, . . . , aM} equal to unity, i.e. am = 1, and label this version
of the test as UDmaxFT (M, q). Then, they consider a set of weights such that the marginal
P values are equal across values of m. The weights are then defined as a1 = 1 and for m > 1
as am = c (q, α, 1) /c (q, α,m), where α is the significance level of the test and c (q, α,m) is
the asymptotic critical value of the test supFT (m; q). This version of the test is denoted as
WDmaxFT (M, q).

Different versions of the tests can be obtained depending on the assumptions made with
respect to the distribution of the regressors and the errors across subsamples. These relate to

different specifications in the construction of the estimate of the matrix V
(
δ̂
)
as discussed

by Bai and Perron (2003a, 2006).
The asymptotic distributions of the above test statistics are derived in Bai and Perron

(1998) and asymptotic critical values are tabulated in Bai and Perron (1998, 2003b) for
ε = 0.05 (M = 9), 0.10 (M = 8), 0.15 (M = 5), 0.20 (M = 3), and 0.25 (M = 2). For the
present paper, the major advantage of the use of the bootstrap procedures is that they allow
freeing us from the constraints imposed on the asymptotic distributions of the test statistics
and their tabulations that depend on ε and M which, as we see, only take some particular
values. Thus, to fill this gap we use the bootstrap distribution which allows affecting any
value to these parameters.

3. Bootstrap procedure

Since the asymptotic tests may, in finite-samples, be biased in the sense that they have
empirical sizes that differ from their nominal ones, an alternative approach is necessary.
One such distribution-free method is the bootstrap method, introduced by Efron (1979). It
is well known that the bootstrap procedure can successfully approximate the finite-sample
distribution especially when the statistic is asymptotically pivotal as discussed previously
(see Hall 1992, and Horowitz 1997). The considered test statistics are asymptotically pivotal
since their asymptotic distributions do not depend on nuisance parameters as discussed by
Bai and Perron (1998).

This paper proposes the following procedure to construct the bootstrapping distribution
under the null hypothesis of structural stability;

1. Compute the asymptotic test statistic, say τ̂ , in the usual way.2

2. Estimate the model under the null hypothesis by the OLS method and construct the
bootstrap data-generating process (DGP) as follows:

y∗t = z
′
tδ̂ + u

∗
t , t = 1, . . . , T, (5)

where δ̂ is the restricted consistent OLS estimate of δ.

2 τ̂ denotes the statistics supFT (k; q), UDmaxFT (M,q) and WDmaxFT (M,q).
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• For the parametric bootstrap, we have u∗t ∼ D̂
(
0, σ̂2

)
where σ̂2 = SSR/ (T − q),

with SSR is the sum of squared residuals. The parametric bootstrap uses a fully
specified parametric model, which means that each set of parameter values defines
just one DGP.

• The nonparametric bootstrap in the residuals of the fitted model is another way
to perform the bootstrap in time series. The procedure is very similar to the
parametric bootstrap, but now the distribution of the residuals is supposed to
be unknown. In this situation, the errors u∗t are generated by resampling with
replacement from the residual vector ũ = {ũt}

T
t=1;

ũt =

√
T

T − q

(

ût −
1

T

T∑

s=1

ûs

)

. (6)

3. Draw B bootstrap samples from the above DGP so as to obtain B bootstrap sta-

tistics, say
{
τ̂∗j
}B
j=1

, in exactly the same way as the real sample was used to com-

pute the asymptotic statistic τ̂ . Note that for the bootstrapping version of the test
WDmaxFT (M, q), the weights are c∗ (q, α, 1) /c∗ (q, α,m), where c∗ (q, α,m) is the
bootstrap critical value obtained from the bootstrapping version of the test supFT (m; q).

4. Estimate the bootstrap P value, say p̂∗ (τ̂), by the proportion of bootstrap samples
that yield a statistic τ̂ ∗ greater than the asymptotic statistic τ̂ . Analytically, let

Ĝ∗ (x) = P (τ̂ ∗ ≤ x) = B−1
B∑

j=1

I
(
τ̂ ∗j ≤ x

)
, (7)

denote the distribution function of the bootstrap test statistic τ̂ ∗, where I
(
τ̂ ∗j ≤ x

)
is

an indicator function that takes the value 1 if its argument is true and 0 otherwise.
The bootstrap P value is then p̂∗ (τ̂) = 1− Ĝ∗ (τ̂).3

Unlike the asymptotic distributions, the bootstrap distribution Ĝ∗ (x) depends on the
potential specifications of the nature of the distributions for the errors and the regressors
across subsamples since we can obtain various versions of the bootstrap tests as the as-
ymptotic ones. Using this distribution, we can affect any value to the trimming ε and the
maximum possible number of breaks M unlike the asymptotic distributions where these
parameters only take some particular values (see subsection 2.2).

4. Monte Carlo analysis

4.1 Monte Carlo design

We report someMonte Carlo experiments to investigate the size of the tests for a Gaussian
zero-mean first-order process without drift, which means that zt = yt−1 in the model (1).
To that effect, we consider three ways of approximating the finite-sample distributions of

3In the case of fixed exogenous regressors and independent normal errors, the statistic p̂∗ (τ̂) can be
interpreted as an exact Monte Carlo P value as discussed previously (see Dwass 1957).
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the statistics; the first approximation is Bai and Perron’s (1998) asymptotic distribution,
the second approximation is the parametric bootstrap distribution and the last one is the
nonparametric bootstrap distribution.

Note that the bootstrap samples must be constructed recursively because of the presence
of a lagged dependent variable. This is necessary because y∗t must depend on y∗t−1 and not
on yt−1 from the observed data. The recursive rule for generating a bootstrap sample is

y∗t = δ̂y
∗
t−1 + u

∗
t , t = 1, . . . , T. (8)

Note that for the parametric bootstrap u∗t ∼ NID
(
0, σ̂2

)
, where σ̂2 is a consistent estimator

of σ2 whereas for the nonparametric one, the errors u∗t are generated by resampling with
replacement from the residuals given by (6).

For each procedure, we attempt to see how the probabilities of rejecting the null hy-
pothesis vary with the persistence as measured by the coefficient on the lagged dependent
variable, the trimming ε and the distribution of the errors across regimes in the estimated
regression model for a sample size T = 150. The trimming and the maximum possible
number of breaks are as follows: ε = 0.05 (M = 5), 0.10 (M = 5), 0.15 (M = 5) and 0.20
(M = 3).4 The nominal level of the tests is α = 5%, the number of Monte Carlo replications
is set at N = 500 and we choose B = 199.5 This choice of B is justified by the fact that we
are interested in doing inference under the null hypothesis. It follows from Hall (1986) that
the error in rejection probability made by a bootstrap test is O

(
T−(j+1)/2

)
(for some integer

j ≥ 1), regardless of the number of bootstrap samples used to estimate the bootstrap critical
values.

4.2 Results of the asymptotic approximation

The results are reported in Table 1. The examination of the finite-sample properties
of the asymptotic approximation illustrates that the size distortions are severe and huge
since the tests tend to over-reject when the serial correlation increases and we allow for
heterogeneity in the errors across regimes. The tendency of the tests to over-reject decreases
as the trimming increases.6 When the degree of persistence is small and for all values of the
trimming, the asymptotic tests slightly under-reject when there is no heterogeneity in the
errors across subsamples since the actual test size tends to be pushed downward relative to
nominal size. When δ ≤ 0.5, the distribution of the errors quite greatly affects the empirical
size of the tests, whereas when serial correlation is high, this distribution has a slight effect
on the size performance of the tests especially for large values of ε.

Other simulation experiments are carried out for T = 200, 250.7 The obtained results
indicate that the size distortions of the tests are still severe even often for some selected
parameter values for which the asymptotic tests may not encounter problems. Indeed, for
T = 250, ε = 0.20 and δ = 0.75, the maximum difference between the actual and nominal

4Note that other values for the trimming ε and the maximum permitted number of breaksM are possible
if our sole concern is the bootstrap tests.

5The value of B is chosen to satisfy the condition that α (B + 1) is an integer as discussed by Davidson
and MacKinnon (2000). This choice of B deletes all eventual bias of the bootstrap estimation of a P value.

6Note that allowing for different variances of the errors induces substantial size distortions unless the
trimming is large for high values of δ.

7The results are not reported, but are available upon request from the authors.
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sizes is 7.8% for the 5%-level test when we do not allow for heterogeneity in the errors across
regimes. A nearly unit-root greatly affects the empirical size even for large samples.

Since the finite-sample performance of the asymptotic tests is not good, it is judicious to
find another approximation to the finite-sample distribution so as to correct the deficiencies
of the asymptotic distribution. This leads us to the bootstrap methods.

4.3 Results of the bootstrap procedures

The results are presented in Tables 2 and 3. The bootstrap techniques consistently
outperform the asymptotic distribution in approximating the finite-sample distribution since
they perfectly reduce the differences between the actual and nominal sizes even for some
chosen parameter values for which the bootstrap tests may encounter problems. Indeed,
with the nonparametric bootstrap approximation and ε = 0.05, the maximum difference
between the empirical and nominal sizes is 1.9% for the 5%-level test when the errors are
homogenous across regimes. Thus, for our examined model, the bootstrap eliminates the
problem of excessive finite-sample size of the tests. The bootstrap performance is nearly
perfect even when we allow for heterogeneity in the errors across regimes regardless of the
value of the nuisance parameter δ with slight superiority to the nonparametric bootstrap.
Thus, we are now able to choose large values of the persistence degree to do correct inferences.
Consequently, there is a marked contrast between the performance of asymptotic tests and
their bootstrap counterparts. Indeed, the use of tests based on the asymptotic approximation
is associated with severe size distortions which heavily depend on δ.

The results show that the bootstrap methods improve on asymptotic approximations
and quasi-perfectly solve the inference problem since the error in rejection probability is
very minimal even when we allow for shifts in the innovation variance across subsamples.
Thus, the bootstrap distribution is a good approximation to the finite-sample distribution
even when the parametric serial correlation is high and the distribution of the errors differs
across regimes.

4.4 Comments

• If heterogeneity in the errors across regimes is or not allowed in the estimated regression
model, the size of the asymptotic tests is adequate under the hypothesis of no break
for large sample sizes and trimming, and small autoregressive coefficient.

• In most cases, the asymptotic tests don’t achieve the right size for small parametric
serial correlation, so there is no reason to be surprised that they fail to provide good
size properties for near-nonstationary cases.

• The bootstrap tests are accurate and often much more accurate than the asymptotic
tests since they have a very small error in rejection probability. This is the reason for
using bootstrap tests instead of asymptotic tests.

• The fact that the bootstrap procedures are more efficient than the asymptotic approx-
imations is confirmed by examining the differences between the empirical sizes and the
nominal level of the tests. Indeed, the bootstrap presents on the whole values of order
10−3, while for the inference based on the asymptotic distributions the difference is
about 10−1 in most cases.
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• We have seen that bootstrapping has reduced the size distortions of the tests. This is
because we know that if an asymptotic test over-rejects under the null hypothesis, a
bootstrap test based on it will reject less often both under the null and under many
alternatives as discussed by MacKinnon (2002).

• Conversely, if an asymptotic test under-rejects under the null hypothesis, a bootstrap
test based on it will reject more often. This can be shown by the results corresponding
to the cases where δ = 0.05 for all values of ε, and there is no heterogeneity in the
errors across subsamples.

• We have carried out some Monte Carlo experiments in which we have allowed for dif-
ferent distributions of the regressors across subsamples. The results (not reported but
available upon request from the authors) indicate that for the case of no heterogene-
ity in the errors, the asymptotic tests have high tendency to under-reject under the
null hypothesis. However, for the case of heterogeneity, they have tendency to over-
reject but less than for the case where the regressors are homogenous across regimes.
The bootstrap tests show the same size properties as the case of homogeneity in the
regressors across regimes.

• In general, it is known that bootstrap tests seem to perform extremely well in the
context of models with exogenous regressors and i.i.d. errors. We observe here that
in the context of testing for multiple structural changes, bootstrap tests also perform
well for dynamic models.

5. Conclusion

This paper has presented bootstrap methods and illustrated their ability to overcome the
problem of incorrect finite-sample size of multiple structural change tests for dynamic models.
The results of the tests are affected by the change of some factors; and the nonparametric
bootstrap appears to perform slightly better than the parametric one for structural change
tests applied to AR(1) process. The results are of interest since they provide evidence on the
accuracy and adequacy of bootstrap methods to eliminate the problem of size distortions
committed by the tests when the inference is based on the asymptotic methods.
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Table 1. Empirical size of the asymptotic tests

T = 150 No heterogeneity in the errors Heterogeneity in the errors
δ δ

ε Tests 0.05 0.25 0.50 0.75 0.95 0.05 0.25 0.50 0.75 0.95

supFT (1) 4.4 5.6 9.0 18.0 36.8 10.0 11.0 13.6 21.4 38.8
supFT (2) 2.4 4.0 9.8 31.4 62.8 12.2 15.0 24.8 39.2 65.2
supFT (3) 1.2 3.0 9.0 30.2 67.4 14.2 15.6 25.6 42.2 73.6

0.05 supFT (4) 2.8 3.4 7.8 33.4 73.6 14.2 17.8 27.2 54.2 79.2
supFT (5) 1.8 3.2 7.6 34.6 80.6 16.2 17.8 28.2 55.4 84.8
UDmax 3.4 6.2 12.0 37.0 80.0 18.0 19.6 31.8 54.8 85.8
WDmax 3.6 5.8 12.4 42.6 84.0 21.6 22.2 38.2 60.6 90.8

supFT (1) 4.6 5.4 8.0 12.6 32.0 6.6 7.6 9.8 14.2 33.2
supFT (2) 2.0 3.4 8.8 23.0 55.6 6.8 7.2 16.6 26.0 59.8
supFT (3) 2.4 3.6 6.8 23.6 56.2 8.2 9.6 14.8 28.2 58.8

0.10 supFT (4) 2.0 2.8 6.2 23.4 61.0 6.8 9.4 15.8 30.4 66.0
supFT (5) 1.8 2.2 6.2 21.6 63.6 7.4 8.8 17.0 30.6 68.6
UDmax 4.0 6.0 10.2 23.8 64.2 7.8 10.6 18.6 31.0 68.6
WDmax 2.8 5.2 9.6 28.6 70.2 9.0 11.4 21.6 37.8 75.4

supFT (1) 4.8 5.4 7.0 10.8 27.2 5.8 6.4 8.2 11.2 27.8
supFT (2) 2.2 4.2 6.4 18.0 44.8 6.2 5.2 10.6 20.6 47.6
supFT (3) 2.4 3.2 6.4 16.4 45.4 5.4 7.0 10.2 19.0 49.4

0.15 supFT (4) 2.2 2.8 5.5 16.4 47.0 6.0 6.6 10.2 21.6 51.0
supFT (5) 2.4 2.6 5.6 17.2 49.2 7.0 7.4 10.2 22.8 52.6
UDmax 4.2 5.0 8.2 16.2 51.0 7.2 7.2 11.0 21.0 53.2
WDmax 4.0 4.8 8.4 20.6 55.4 8.2 8.2 13.8 24.8 59.8

supFT (1) 3.6 4.2 6.2 9.0 22.2 4.2 5.6 7.6 10.2 23.6
supFT (2) 2.2 3.2 6.2 13.6 35.2 4.2 4.0 7.6 14.6 36.8

0.20 supFT (3) 2.4 3.2 5.4 12.4 34.4 4.0 4.8 7.0 14.4 37.6
UDmax 3.4 4.4 6.8 13.6 36.8 5.8 6.6 8.8 16.0 40.0
WDmax 3.6 4.2 6.8 14.8 41.0 6.0 6.4 9.2 16.6 42.2
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Table 2. Empirical size of the parametric bootstrap tests

T = 150 No heterogeneity in the errors Heterogeneity in the errors
δ δ

ε Tests 0.05 0.25 0.50 0.75 0.95 0.05 0.25 0.50 0.75 0.95

supFT (1) 3.7 3.9 4.0 4.2 5.0 3.0 4.0 3.9 4.6 4.6
supFT (2) 4.6 3.9 3.9 3.8 3.0 2.9 3.9 4.8 4.0 3.8
supFT (3) 4.2 3.9 4.4 5.4 3.9 3.8 4.2 4.4 4.4 4.4

0.05 supFT (4) 4.5 4.0 4.8 3.8 4.0 3.8 4.6 3.8 3.4 5.2
supFT (5) 4.8 4.2 5.0 4.2 4.1 4.7 5.0 4.4 5.4 3.9
UDmax 4.5 4.6 4.4 4.4 4.2 3.9 5.0 4.3 4.6 3.8
WDmax 5.8 5.6 6.0 5.0 4.1 5.8 7.4 6.4 6.2 5.4

supFT (1) 4.1 3.6 5.2 5.2 5.8 6.0 4.7 5.8 5.2 6.4
supFT (2) 6.2 5.4 5.5 5.4 6.2 6.4 7.4 7.0 6.4 5.0
supFT (3) 6.2 7.0 6.0 5.0 4.4 6.6 8.0 8.1 5.2 7.0

0.10 supFT (4) 6.2 6.6 6.0 4.8 4.6 7.2 8.0 7.1 4.9 6.6
supFT (5) 7.0 6.4 6.1 4.5 4.8 6.8 7.3 7.8 5.6 6.6
UDmax 4.8 5.0 5.0 4.8 6.4 7.0 7.1 6.2 5.8 6.8
WDmax 5.8 5.6 5.2 4.8 6.2 9.8 10.1 10.0 8.4 7.4

supFT (1) 4.6 4.2 6.2 4.8 6.6 4.2 5.0 7.0 4.4 6.0
supFT (2) 4.8 4.6 5.6 5.4 6.6 6.2 6.0 7.0 4.8 5.8
supFT (3) 5.8 5.0 5.4 5.8 6.8 6.2 5.6 7.4 4.6 5.4

0.15 supFT (4) 5.4 5.0 5.0 5.2 5.2 6.0 5.1 7.4 4.8 5.2
supFT (5) 5.4 4.8 5.0 5.8 4.8 5.8 5.4 6.8 4.6 5.0
UDmax 4.2 4.0 5.6 5.6 6.4 6.0 4.8 6.6 4.1 6.2
WDmax 4.0 3.9 6.0 5.4 6.6 8.2 5.2 6.8 4.0 9.0

supFT (1) 4.6 4.8 4.8 5.4 6.0 4.6 4.6 5.4 4.8 5.8
supFT (2) 3.8 3.6 5.8 5.4 8.0 5.0 7.2 9.0 6.0 7.2

0.20 supFT (3) 4.2 4.0 5.4 5.8 7.2 4.6 4.6 5.4 5.3 6.6
UDmax 4.0 5.0 5.0 5.4 6.4 4.4 4.6 6.2 5.2 7.2
WDmax 3.9 3.9 5.4 6.0 6.6 5.0 5.0 7.0 5.6 7.6

11



Table 3. Empirical size of the nonparametric bootstrap tests

T = 150 No heterogeneity in the errors Heterogeneity in the errors
δ δ

ε Tests 0.05 0.25 0.50 0.75 0.95 0.05 0.25 0.50 0.75 0.95

supFT (1) 5.2 4.7 4.7 3.9 4.5 4.6 4.2 4.8 4.2 4.6
supFT (2) 6.0 6.5 5.0 5.1 5.2 6.3 6.4 5.2 5.2 4.5
supFT (3) 5.4 5.2 4.6 5.0 5.2 5.6 5.9 5.6 4.6 4.6

0.05 supFT (4) 4.9 5.4 6.2 5.0 4.9 6.0 5.8 6.8 6.0 4.2
supFT (5) 4.6 4.9 5.0 4.6 5.8 5.6 5.1 6.2 4.9 5.6
UDmax 5.6 5.2 5.0 5.2 5.6 5.2 4.6 7.4 5.0 5.2
WDmax 6.9 6.4 6.4 5.1 6.0 8.0 8.6 10.4 7.4 7.2

supFT (1) 3.6 4.0 4.4 4.0 5.6 3.4 4.0 4.0 3.6 5.6
supFT (2) 4.4 5.4 5.6 4.8 5.6 6.0 4.8 5.8 7.4 5.4
supFT (3) 4.4 6.1 5.2 6.0 5.0 5.0 5.8 6.0 6.4 5.8

0.10 supFT (4) 4.6 5.0 5.6 4.4 4.6 4.2 5.4 4.8 5.6 5.0
supFT (5) 4.6 5.2 4.9 4.6 5.4 4.6 4.6 4.2 5.6 6.2
UDmax 4.8 4.8 3.9 4.4 5.2 4.0 5.1 5.6 5.4 5.2
WDmax 5.2 4.6 3.9 3.8 5.8 6.0 7.0 7.1 6.5 7.0

supFT (1) 4.2 3.8 3.9 5.0 7.2 3.8 4.4 3.9 4.8 7.0
supFT (2) 4.4 5.2 6.0 4.6 5.0 4.4 5.6 5.8 5.6 5.6
supFT (3) 4.8 6.0 6.1 5.8 5.0 5.8 6.0 6.0 6.0 5.0

0.15 supFT (4) 4.2 4.6 5.4 4.8 4.6 5.0 5.2 5.6 6.0 6.0
supFT (5) 4.0 4.6 4.2 4.5 5.0 4.2 5.0 5.4 5.4 6.4
UDmax 4.6 4.6 4.5 4.4 6.0 4.8 4.6 5.2 5.5 5.8
WDmax 4.0 4.6 4.9 4.6 5.8 7.2 6.6 6.2 8.0 7.2

supFT (1) 4.7 3.6 4.4 4.6 8.2 3.4 3.4 4.2 4.8 8.2
supFT (2) 4.6 4.4 5.2 5.2 6.2 4.2 4.0 4.6 4.9 6.2

0.20 supFT (3) 3.9 5.4 5.4 5.0 6.6 4.6 4.8 5.2 4.4 6.2
UDmax 4.4 4.4 5.0 4.6 7.0 4.2 3.8 4.2 4.6 6.1
WDmax 3.9 4.4 4.6 5.8 6.1 4.8 5.4 5.0 6.2 8.0

12


